SYNTHESIS OF OPTICALLY ACTIVE α -SULFINYLACETALDEHYDE

P. PFLIEGER^a, C. MIOSKOWSKI^{a*},

J.P. SALAUN b, D. WEISSBART b and F. DURST b

^a Laboratoire de Chimie Bio-organique, Université Louis Pasteur-CNRS UA 31
Faculté de Pharmacie, 74, Route du Rhin F-67401 Strasbourg Cedex, France.
^b Laboratoire d'Enzymologie Cellulaire et Moléculaire, Université Louis Pasteur-CNRS UA 1182, 28, rue Goethe, F-67083 Strasbourg Cedex, France.

Abstract: Optically active α -sulfinylacetaldehyde is prepared by formylation of the (R)-methyl p-tolylsulfoxide anion with N-formylpiperidine.

Recently several groups have utilized chiral β -hydroxysulfoxides 2^{1-4} , via the corresponding β -ketosulfoxides 3, for the synthesis of optically active epoxides 4 and secondary alcohols 5. Both antipodes of the epoxide and alcohol are accessible from the same β -ketosulfoxide 3 by stereoselective reduction of the keto fonctionality (scheme 1).

Unfortunately, to vary the substituent R, it is necessary to synthesize the starting β -ketosulfoxide 3 in each case. We felt it would be advantageous to prepare α -sulfinylacetaldebyde 1 as a versatile reagent to which a wide range of nucleophiles could be added selectively to either face depending on the organometallic used, thus providing direct access to a variety of β -hydroxysulfoxides 2. Although it was reported that α -sulfinylacetaldehyde 1 could not be prepared due to its instability ⁵, we studied several different approaches to overcome this problem (scheme 2).

/THF/-78°C, 0.5 h^{9,10}; d) HCl/H₂O/THF at R.T. ¹⁰; e) CuCl₂/THF/phosphate buffer pH 7⁷ or MeI/95% EtOH, heated under reflux⁸; f) After metallation with 1 eq of LDA at -30°C, followed by addition of HC(OPh)(OEt)₂ ¹¹ (-30°C to +20°C) no reaction was observed.

Addition of the lithium enolate of acetaldehyde, prepared from THF and n-butyllithium 6 , to (-)-menthyl (S)-p-tolylsulfinate 6, did not lead to 1. Metallated acetaldehyde hydrazone adds to (-)-menthyl (S)-p-tolylsulfinate giving the α -sulfinylhydrazone <u>8</u> in high yields but_all attemps to hydrolyse the hydrazone to the corresponding aldehyde were unsuccessfull ^{7,8}. However, α -sulfinylacetaldehyde 1 could be obtained in lower yields after acid hydrolysis of a mixture of α -sulfinylcyclohexylacetaldimine and the corresponding enamine 9, prepared by condensation of metallated cyclohexylacetaldimine 9,10 and (-)-menthyl (S)-p-tolylsulfinate 6. Finally we changed strategy and tried to formylate the anion of methyl p-tolyl sulfoxide: condensation with diethyl-phenyl-orthoformate ¹¹ did not afford the diethylacetal <u>10</u>, but with

N-formylpiperidine ¹², after 30 min at -30°C, the desired product 1 was obtained in 78% yield.

Preliminary results of condensations with organometallic reagents showed that a-sulfinylacetaldehyde 1 enolises easily. Trialkynylaluminium reagents, under the conditions used by H. Kosugi ⁴ give β -hydroxysulfoxides 2 in poor yields (20-30%) with a 75/25 diastereoisomeric ratio. Further studies to improve upon these results will be reported in due course.

Preparation of the o-sulfinylacetaldehyde 1:

(R)-(+)-methyl p-tolylsulfoxide (600 mg, 3.89 mmol, 1 eq), obtained by condensation of methylmagnesium iodide with (-)-menthyl-(S) p-tolylsulfinate, was metallated using 14.3 ml of LDA (0.3 M in THF, 4.28 mmol, 1.1 eq) at -35°C during 30 min. Freshly distilled N-formylpiperidine (480 mg, 4.24 mmol, 1.1 eq) in 1 ml of THF was then added slowly and the temperature was maintained 30 min at -30°C. The reaction mixture was poured into 40 ml of an ice-cooled 5 % aqueous HCl solution and extracted with ethylacetate (3x150 ml). The organic layers were washed with cold brine (3x100 ml) and dried over Na_2SO_4 . After evaporation of the solvent under vacuo, α -sulfinylacetaldehyde was obtained in 78% yield (554 mg). The crude material could neither be purified by silica gel chromatography nor by distillation. Fortunatly the ¹H-NMR (200 MHz, $CDCl_3$)¹³ spectrum indicated a purity greater than 95% and thus the crude material can be used without further purification or stored in dry THF (10ml) under N₂ at -30°C without decomposition for several months. The 2,4-DNPH derivative of the α -sulfinylacetaldehyde was prepared and fully characterized ¹⁴.

Acknowledgements:

The authors thank Dr. A. GREINER (Rhône-Poulenc Agrochimie Lyon) for usefull discussions. This work was supported by Institut National de la Recherche Agronomique Grant 4483 and CNRS-MRES Grant "interface chimie-biologie" 1986.

Philippe PFLIEGER was recipient of a CNRS/Rhône-Poulenc Fellowship (BDI).

References and notes

- 1- G. Solladié, C. Greck, G. Demailly, A. Solladié-Cavallo, Tetrahedron Lett., 23, 5047-5050 (1982)
- 2- G. Solladié and J. Hutt, Tetrahedron Lett., 28, 797-800 (1987)
- 3- H.J. Altenbach, Nachr. Chem. Tech. Lab., 36, 33-36 (1988)
- 4- H. Kosugi, J. Synth. Org. Chem. Jap., 45, 472-480 (1987)
- 5- L. Banfi, L. Colombo, C. Gennari, Synthesis, 829-831 (1982)
- 6- R.B. Bates, L.M. Kroposki and D.E. Potter, J. Org. Chem., 37, 560-562 (1972)
- 7- E.J. Corey, S. Knapp, Tetrahedron Lett., 3667-3668 (1976)
- 8- M. Avaro, J. Levisalles and H. Rudler, J. Chem. Soc., Chem. Commun., 445-446 (1969)
- 9- R. Tiollais, Bull. Soc. Chim. Fr., 708 (1947)
- 10- J. F. Le Borgne, J. Organomet. Chem., 122, 123-143 (1976)
- 11- F. Barbot, L. Poncini, B. Radrianoelina and P. Miginiac, J. Chem. Research (M), 4016-4035 (1981)
- 12- G. A. Olah and M. Arvanaghi, Angew. Chem. Int. Ed. Engl., 20, 878-879 (1981)
- 13- α-sulfinylacetaldehyde 1: oil. ¹H NMR (CDCl₃) 200 MHz: δ 2.43 (s, 3H), 3.82 (splitted AB system, 2 H, J=2.5 Hz, V_A =3.78, V_B =3.86, J_{AB} =14 Hz), 7.47 (AB system, 4H, V_A =7.38, V_B =7.56, J_{AB} =8.5 Hz), 9.71 (t, 1H, J=2.5 Hz)
- 14- 2,4-DNPH derivative: Solid, m.p. 160°C. ¹H NMR (CDCl₃) 200 MHz: δ 2.43 (s, 3H), 3.87 (splitted AB system, 2H, J=6.0 Hz, V_A =3.77, V_B =3.97, J_{AB} =13.5 Hz), 7.43 (t, 1H, J=6 Hz), 7.46 (AB system, 4H, V_A =7.38, V_B =7.54, J_{AB} = 9.0 Hz), 7.79 (d,1H, J=9.5 Hz), 8.28 (dd, 1H, J_1 =9.5 Hz, J_2 =2.5 Hz), 9.11 (d, 1H, J=2.5 Hz), 11.18 (s, 1H). IR (CHCl₃): 3280 cm ⁻¹. <u>Anal.</u> C₁₅H₁₄N₄O₅S: Calculated C 49.72; H 3.89; N 15.46. Found: C 49.79; H 3.89; N 15.41. [α]_D (c=0.373, acetone) = + 214°

(Received in France 4 October 1988)